ImageSegmenterOut¶
- class giant.image_processing.image_segmenter.ImageSegmenterOut(labeled_image, foreground_image, stats, centroids)[source]¶
Create new instance of ImageSegmenterOut(labeled_image, foreground_image, stats, centroids)
- Parameters:
labeled_image (ndarray[tuple[Any, ...], dtype[int32]])
foreground_image (ndarray[tuple[Any, ...], dtype[uint8]])
stats (ndarray[tuple[Any, ...], dtype[int32]])
centroids (ndarray[tuple[Any, ...], dtype[float64]])
- labeled_image: ndarray[tuple[Any, ...], dtype[int32]]¶
An image with labeled foreground objects (>=0) of the same shape as the input and dtype np.int32
- foreground_image: ndarray[tuple[Any, ...], dtype[uint8]]¶
A boolean array the same shape as the input with 0 in the background pixels and 1 in the foreground pixels
- stats: ndarray[tuple[Any, ...], dtype[int32]]¶
The stats vector returned from opencv’s connectectedComponentsWithStats as a nx5 array.
The columns are [left x coordinate, top y coordinate, width, height, area] in pixels.
It is best to access the appropriate column using cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT, or cv2.CC_STAT_AREA in case opencv ever changes the order.
Each row corresponds to the object number in the labeled image
- centroids: ndarray[tuple[Any, ...], dtype[float64]]¶
The unweighted centroids of each blob in the image as a nx2 array (x, y) in pixels.