feature_matchersΒΆ

Classes

FeatureMatcher

Abstract base class for any image matching process.

KeypointMatcher

Abstract base class defining the interface for keypoint detection and matching.

KeypointMatcherOptions

Options for configuring a KeypointMatcher

OrbKeypointMatcher

Implementation of KeypointMatcher using ORB for detection and FLANN for matching.

ORBKeypointMatcherOptions

Options for configuring the ORB keypoint matcher

SIFTKeypointMatcher

Implementation of KeypointMatcher using SIFT for detection and FLANN for matching.

SIFTKeypointMatcherOptions

Options for configuring the ORB keypoint matcher

RoMaFeatureMatcher

Implementation of a matcher using RoMa.

RoMaFeatureMatcherOptions

RoMaFeatureMatcherOptions(device: torch.device = <factory>, coarse_res: int | tuple[int, int] = 560, upsample_res: tuple[int, int] = (864, 864), sample_thresh: float = 0.05)

Enums and Config

FLANNCentersInit

Enum specifying the algorithm to use to initialize kmeans centers

FLANNIndexAlgorithmType

An enum specifying the FLANN algorithm to use.

FLANNIndexAutotunedParams

Parameters for confi of automatically selecting the best algorithm based on data

FLANNIndexCompositeParams

Parameters for config of combination of randomized k-d trees and hierarchical k-means

FLANNIndexHierarchicalParams

Parameters for config of hierarchical clustering

FLANNIndexKdTreeParams

Parameters for configuring k-dimensional tree

FLANNIndexKdTreeSingleParams

Parameters for configuring single randomized k-d tree (vs multiple trees in regular KDTREE)

FLANNIndexKMeansParams

Parameters for config of hierarchical k-means clustering

FLANNIndexLSHParams

Paramters for config of locality sensitive hashing

FLANNIndexLinearParams

Parameters for initializing brute force linear search

FLANNSearchParams

Parameters for configuring how FLANN does a search

FLANNDistance