OwenModel.compute\_jacobian =========================== .. currentmodule:: giant.camera_models.owen_model :mod:`giant.camera_models.owen_model`\: .. automethod:: OwenModel.compute_jacobian Example:: >>> from giant.camera_models import OwenModel >>> model = OwenModel(kx=3000, ky=4000, px=500, py=500, a1=1e-5, a2=1e-6, >>> misalignment = [[1e-12, -2e-14, 3e-10], [2e-15, 1e-13, 3e-10]], >>> estimation_parameters = ['multiple misalignments']) >>> model.compute_jacobian([[[0.5], [0], [1]], [[0.1, 0.2, 0.3], [-0.3, -0.4, -0.5], [4, 5, 6]]], >>> temperature=[10, -20]) array([[ 0.00000000e+00, -3.75075000e+03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 4.00080000e+03, 2.98059600e-07, -2.00040000e+03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -5.62612499e+00, -3.00247537e+03, -2.25045000e+02], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.02330450e+03, 7.50150000e+00, -1.00020000e+02], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -9.60191999e+00, -3.00540096e+03, -2.40048000e+02], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.02640512e+03, 1.28025600e+01, -1.60032000e+02], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.25025000e+01, -3.00810150e+03, -2.50050000e+02], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.02858333e+03, 1.66700000e+01, -2.00040000e+02]]) Mathematically the Jacobian matrix is defined to be .. math:: \frac{\partial\mathbf{x}_P}{\partial\mathbf{c}} = \left[\begin{array}{cccc} \frac{\partial\mathbf{x}_P}{\partial f} & \frac{\partial\mathbf{x}_P}{\mathbf{k}} & \frac{\partial\mathbf{x}_P}{\partial\mathbf{d}} & \frac{\partial\mathbf{x}_P}{\partial\mathbf{a}} & \frac{\partial\mathbf{x}_P}{\partial\boldsymbol{\delta\theta}}\end{array}\right] where, using the chain rule, .. math:: :nowrap: \begin{gather} \frac{\partial\mathbf{x}_P}{\partial f} = \frac{\partial\mathbf{x}_P}{\partial\mathbf{x}_I'} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_I} \frac{\partial\mathbf{x}_I}{\partial f} \\ \frac{\partial\mathbf{x}_P}{\partial\mathbf{d}} = \frac{\partial\mathbf{x}_P}{\partial\mathbf{x}_I'} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{d}} \\ \frac{\partial\mathbf{x}_P}{\partial\boldsymbol{\delta\theta}} = \frac{\partial\mathbf{x}_p}{\partial\mathbf{x}_I'} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_I} \frac{\partial\mathbf{x}_I}{\partial\mathbf{x}_C'} \frac{\partial\mathbf{x}_C'}{\partial\boldsymbol{\delta\theta}} \end{gather} and .. math:: :nowrap: \begin{gather} \frac{\partial\mathbf{x}_p}{\partial\mathbf{k}} = \left[ \begin{array}{cccccc} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \end{array}\right] \\ \frac{\partial\mathbf{x}_P}{\partial\mathbf{a}} = \left[\begin{array}{cc} k_x & k_{xy} \\ k_{yx} & k_y\end{array}\right] \mathbf{x}_I \left[\begin{array}{ccc} T & T^2 & T^3 \end{array}\right] \\ \frac{\partial\mathbf{x}_P}{\partial\mathbf{x}_I'} = (1+a_1T+a_2T^2+a_3T^3) \left[\begin{array}{cc} k_x & k_{xy} \\ k_{yx} & k_y \end{array}\right] \\ \begin{split} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_I} = & \left(1 + \epsilon_2r^2+\epsilon_4r^4+\epsilon_5y_I+\epsilon_6x_I\right)\mathbf{I}_{2\times 2}+ \left(\epsilon_1r+\epsilon_3r^3\right) \left[\begin{array}{cc}0 & -1 \\ 1 & 0 \end{array}\right]+\\ &\left\{\left(2\epsilon_2r+4\epsilon_4r^3\right) \mathbf{x}_I+\left(\epsilon_1+3\epsilon_3r^2\right) \left[\begin{array}{c} -y_I \\ x_I\end{array}\right]\right\} \frac{\mathbf{x}_I^T}{r} + \mathbf{x}_I\left[\begin{array}{cc} \epsilon_5 & \epsilon_6\end{array}\right] \end{split}\\ \frac{\partial\mathbf{x}_I}{\partial f} = \frac{1}{z_C'} \\ \frac{\partial\mathbf{x}_I'}{\partial\mathbf{d}} = \left[ \begin{array}{cccccc} r^2\mathbf{x}_I & r^4\mathbf{x}_I & y_I\mathbf{x}_I & x_I\mathbf{x}_I & r\mathbf{x}_{Ii} & r^3\mathbf{x}_{Ii} \end{array}\right]\\ \frac{\partial\mathbf{x}_I}{\partial\mathbf{x}_C'} = \frac{f}{z_C'}\left[ \begin{array}{ccc}1 & 0 & \frac{-x_C'}{z_C'} \\ 0 & 1 & \frac{-y_C'}{z_C'} \end{array}\right] \\ \frac{\partial\mathbf{x}_C'}{\partial\boldsymbol{\delta\theta}} = \left[\mathbf{x}_C\times\right] \\ \mathbf{x}_{Ii}=\left[\begin{array}{c}-y_I \\ x_I\end{array}\right]\\ r=\sqrt{\mathbf{x}_I^T\mathbf{x}_I} \end{gather} where :math:`\mathbf{k}=[k_x \quad k_{xy} \quad k_y \quad k_{yx} \quad p_x \quad p_y]` is a vector of the intrinsic camera parameters, :math:`\mathbf{a}=[a_1 \quad a_2 \quad a_3]` is a vector of the temperature dependence coefficients, :math:`\mathbf{x}_C'` is the camera frame point after applying the misalignment, :math:`\boldsymbol{\delta\theta}` is the misalignment vector, :math:`\mathbf{x}_C` is the camera frame point before misalignment is applied, :math:`\left[\bullet\times\right]` is the skew-symmetric cross product matrix formed from :math:`\bullet`, :math:`\mathbf{x}_P` is the pixel location, :math:`\mathbf{x}_I` is the gnomic location, :math:`\mathbf{x}_I'` is the distorted gnomic location, :math:`a_{1-3}` are the temperature coefficients, :math:`T` is the temperature, :math:`f` is the focal length in units of distance, and :math:`\mathbf{d}=[\epsilon_2 \quad \epsilon_4 \quad \epsilon_5 \quad \epsilon_6 \quad \epsilon_1 \quad \epsilon_3]` is a vector of the distortion coefficients.