BrownModel.compute\_unit\_vector\_jacobian ========================================== .. currentmodule:: giant.camera_models.brown_model :mod:`giant.camera_models.brown_model`\: .. automethod:: BrownModel.compute_unit_vector_jacobian Mathematically this Jacobian is defined as .. math:: \frac{\partial\mathbf{x}_C}{\partial\mathbf{x}_P} = \frac{\partial\mathbf{x}_C}{\partial\mathbf{x}_C'} \frac{\partial\mathbf{x}_C'}{\partial\mathbf{x}_I} \frac{\partial\mathbf{x}_I}{\partial\mathbf{x}_I'} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_P} where .. math:: :nowrap: \begin{gather} \frac{\partial\mathbf{x}_C}{\partial\mathbf{x}_C'} = \mathbf{T}_{\boldsymbol{\delta\theta}}^T\\ \frac{\partial\mathbf{x}_C'}{\partial\mathbf{x}_I} = \left[\begin{array}{cc} 1/v & 0 \\ 0 & 1/v \\ 0 & 0\end{array}\right] - \frac{1}{v^3}\left[\begin{array}{c} \mathbf{x}_I \\ 1 \end{array}\right]\mathbf{x}_I^T \\ \frac{\partial\mathbf{x}_I}{\partial\mathbf{x}_I'} = \mathbf{I}_{2\times 2} - \left.\frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_I}\right|_{\mathbf{x}_I=\mathbf{x}_I'} \\ \begin{split} \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_I} = &\left(1 + k_1r^2+k_2r^4+k_3r^6\right) \mathbf{I}_{2\times 2} + \left[\begin{array}{cc}2p_1y_I+4p_2x_I & 2p_1x_I \\ 2p_2y_I & 4p_1y_I+2p_2x_I \end{array}\right] + \\ & \left(2k_1+4k_2r^2+6k_3r^4\right)\mathbf{x}_I\mathbf{x}_I^T + 2 \left[\begin{array}{cc} p_2x_I & p_2y_I \\ p_1x_I & p_1y_I \end{array}\right] \end{split}\\ \frac{\partial\mathbf{x}_I'}{\partial\mathbf{x}_P} = \frac{\mathbf{K}^{-1}}{1+a_1T+a_2T^2+a_3T^3} \end{gather} :math:`\mathbf{x}_C'` is the camera frame point after applying the misalignment, :math:`\boldsymbol{\delta\theta}` is the misalignment vector, :math:`\mathbf{x}_C` is the camera frame point before misalignment is applied, :math:`\mathbf{x}_P` is the pixel location, :math:`\mathbf{x}_I` is the gnomic location, :math:`\mathbf{x}_I'` is the distorted gnomic location, :math:`a_{1-3}` are the temperature coefficients, :math:`T` is the temperature, :math:`\mathbf{T}_{\boldsymbol{\delta\theta}}` is the rotation matrix corresponding to rotation vector :math:`\boldsymbol{\delta\theta}`, :math:`v=\sqrt{\mathbf{x}_I^T\mathbf{x}_I + 1^2}`, and :math:`\mathbf{K}^{-1}` is the inverse intrinsic matrix.